Extensions 1→N→G→Q→1 with N=C2 and Q=C42⋊D7

Direct product G=N×Q with N=C2 and Q=C42⋊D7
dρLabelID
C2×C42⋊D7224C2xC4^2:D7448,925


Non-split extensions G=N.Q with N=C2 and Q=C42⋊D7
extensionφ:Q→Aut NdρLabelID
C2.1(C42⋊D7) = C42.282D14central extension (φ=1)224C2.1(C4^2:D7)448,219
C2.2(C42⋊D7) = C4×Dic7⋊C4central extension (φ=1)448C2.2(C4^2:D7)448,465
C2.3(C42⋊D7) = C424Dic7central extension (φ=1)448C2.3(C4^2:D7)448,466
C2.4(C42⋊D7) = C4×D14⋊C4central extension (φ=1)224C2.4(C4^2:D7)448,472
C2.5(C42⋊D7) = C7⋊(C428C4)central stem extension (φ=1)448C2.5(C4^2:D7)448,184
C2.6(C42⋊D7) = C7⋊(C425C4)central stem extension (φ=1)448C2.6(C4^2:D7)448,185
C2.7(C42⋊D7) = Dic7⋊C4⋊C4central stem extension (φ=1)448C2.7(C4^2:D7)448,186
C2.8(C42⋊D7) = C22.58(D4×D7)central stem extension (φ=1)224C2.8(C4^2:D7)448,198
C2.9(C42⋊D7) = D14⋊(C4⋊C4)central stem extension (φ=1)224C2.9(C4^2:D7)448,201
C2.10(C42⋊D7) = D14⋊C45C4central stem extension (φ=1)224C2.10(C4^2:D7)448,203
C2.11(C42⋊D7) = C42.243D14central stem extension (φ=1)224C2.11(C4^2:D7)448,224
C2.12(C42⋊D7) = C42.182D14central stem extension (φ=1)224C2.12(C4^2:D7)448,239
C2.13(C42⋊D7) = C42.185D14central stem extension (φ=1)224C2.13(C4^2:D7)448,243
C2.14(C42⋊D7) = (C2×C42).D7central stem extension (φ=1)448C2.14(C4^2:D7)448,467
C2.15(C42⋊D7) = (C2×C42)⋊D7central stem extension (φ=1)224C2.15(C4^2:D7)448,474

׿
×
𝔽